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Abstract—We demonstrate a 10 wavelength, 200 GHz spaced,
monolithically integrated, polarization-multiplexed, InP differen-
tial quadrature phase shift keying receiver operating at 45.6 Gb/s
per wavelength. The receiver is based on a novel technique for po-
larization demodulation and phase tracking that does not require
any external components.

Index Terms—Monolithic InP integration, multichannel dense
wavelength-division multiplexing receiver, photonic integrated cir-
cuit (PIC).

I. INTRODUCTION

T he first generation, 100 Gb/s (10 channel 10 Gb/s per
channel), InP large-scale photonic integrated circuits

(PICs) we reported five years ago were based on the ON-OFF
keying (OOK) modulation format [1]. A year later, using the
same platform, we demonstrated a 40 channel OOK PIC, with
each channel capable of operating at 40 Gb/s [2]. A more
detailed description of these PICs, and a general account of the
history of photonic integration on InP dating back to late 1960s
may be found in [3].

OOK modulation format is spectrally not very efficient.
Transmission formats employing phase modulation schemes
are spectrally more efficient, and have been of much interest
lately [4]. Two years ago, we reported a 10 channel, 40 Gb/s per
channel, differential quadrature phase shift keying (DQPSK)
transmitter PIC [5]. Recently using the same platform, we have
demonstrated a 10 channel, 40 Gb/s per channel, polarization
multiplexed (PM), return to zero DQPSK transmitter PIC [6].

In general, optical phase modulated formats require a phase
reference in the form of a laser local oscillator (LO) for demod-
ulation. On the other hand, DQPSK signals that use differential
phase coding can be demodulated using a delay line interferom-
eter [4]. In addition, PM systems typically used to double the
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spectral efficiency, require real-time polarization tracking and
demodulation. In coherent detection systems using a local oscil-
lator this can be done in real time using digital signal processing
algorithms [7]. In the early demonstrations of non-LO-based
PM DQPSK systems, the incoming signal was polarization de-
multiplexed “manually” using a polarization controller followed
by a polarization beam splitter (PBS) [8], [9]. Recently, methods
for automatic polarization tracking using external active optics
have been reported [10], [11]. In a modified version of the PM
DQPSK format reported recently, the signal is time/polarization
multiplexed, with half-symbol time interleaving, at the trans-
mitter, and then detected using decision circuitry operating at
twice the symbol rate without the need for explicit optical po-
larization demultiplexing [12].

In this paper, we report a 10 channel, 45.6 Gb/s per channel,
PM DQPSK InP receiver PIC. This PIC is based on a novel de-
modulation technique for PM DQPSK signals that uses mul-
tiple combinations of the optical input signal to decode the data
irrespective of polarization alignment at the receiver [13], [14].
Rahn et al. [13] describe a Si planar lightwave circuit/InP photo-
diode hybrid implementation of the receiver. Here, we describe
a complete PM DQPSK receiver using a monolithically inte-
grated InP PIC first reported in [14].

II. DQPSK PIC ARCHITECTURE

A. Device Layout

Fig. 1 shows the architecture of the DQPSK received PIC.
At the PIC input is the polarization processing block that is
common to all ten wavelengths. The input signal is first split into
its TE and TM components using a PBS. The TM output of the
PBS then passes through a polarization rotator that converts the
signal to the TE polarization (labeled TE*). The adjacent arm
with the original TE component has a variable optical attenuator
(VOA) to compensate for the insertion loss of the rotator, and
power balance the two outputs of the polarization processing
block. The TE and TE* signals are then wavelength demulti-
plexed using a single array waveguide grating (AWG).

The demultiplexed outputs of the AWG are then fed to the net-
work composed of 1-bit delay interferometers, and 90 optical
hybrids. The circuit combination is repeated for each demulti-
plexed wavelength channel. In a conventional DQPSK decoder
the TE and TM components would be separately processed by
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Fig. 1. DQPSK receiver PIC architecture.

mixing the original signal with its delayed component .
In this architecture, we create the following four combinations,

and . Since
they are orthogonal, combinations of TE and TM signals would
not produce any signal output. The polarization rotator at the
input that converts the TM to the TE makes this architecture
possible.

The four outputs of the optical hybrid are terminated in two
pairs of balanced high speed photodetectors (PD). The two in-
puts to a balanced PD pair are 180 out of phase, and create
a differential signal output. Further, the two PD pairs have a
90 phase offset between them, and this phase offset is used to
separate the I (in-phase) and Q (quadrature) components of the
quadrature phase modulated signal.

The PD outputs are then fed to a copackaged electronic pro-
cessor ASIC. This ASIC has high-speed transimpedance am-
plifiers (TIAs), one per PD pair, as the input stage. There are
16 PDs per channel (wavelength) for a total of 160 PDs on the
PIC. It is almost impossible to build such a receiver reliably out
of discrete components, and it is in realizing architectures like
these that monolithic photonic integration triumphs.

B. Polarization Tracking

This section describes the mathematical foundation for the
PM-DQPSK demodulation, in particular the signal processing
that enables polarization tracking

(1)

The purpose of the two balanced receivers, mixing the bit-de-
layed and current optical signals, is to extract electrically the
difference in phase between two sequential bits. Equation (1)
demonstrates how the electrical outputs can represent the com-
plex phase between the two signals. Practically, the two elec-
trical signals carry the in-phase and quadrature portions of the
phase on two distinct wires. It is convenient to represent the two
signals mathematically as one complex value.

For phase modulated formats, the electrical field at the trans-
mitter is , representing the electric field in the op-
tical domain. In order to extract the phase change between two
sequential bits in pol-muxed DQPSK, the circuit in can be rep-
resented mathematically using (2) and (3). In this case, the two
orthogonal polarization states generated at the transmitter are
shown as having arrived at the receiver without any rotations.
The matrix represents an ideal polarization splitter, which yields
two (complex) electrical outputs representing the phase change
for horizontal and vertical polarizations

(2)

(3)
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The polarization rotation through a lossless fiber can be rep-
resented by the Jones matrix shown as follows:

(4)

For light transmitted through an arbitrary polarization
rotation, the corresponding signals seen electrically can be
described using the following equations:

(5)

(6)

Expanding the matrix by itself yields (7) and

(10). A conventional technique for receiving pol-mux DQPSK
signals would be to place an optical polarization tracker before
the optical receiver. However, a real-time polarization tracker
is difficult to realize in optics. If the TE and TM signals are
also mixed together (using a 90 polarization rotation on one of
the polarization states), additional information is obtained about
the incoming data stream. While additional photodiodes are re-
quired, this enables polarization tracking of the data sequence
through signal processing. For simplicity, the Jones matrix an-
gles are simplified with the notation and

(7)

(8)

(9)

(10)

In order to demonstrate that the data are sufficient for de-
modulating the incoming streams electrically without regard to
the polarization state, the 16 values shown in (7)–(10) are re-
arranged into a 4 4 matrix , given by (11), shown at the
bottom of the page.

is nonsingular, which is required for polarization tracking,
and its inverse is given by (12), shown at the bottom of the page.

represents the coefficients that weigh the outputs from
the eight differential TIA outputs to generate the eight mixtures
of (7)–(10). However, only the mixing of the bits within the
same polarization is of importance. This is represented by the
first and last row of , rewritten as S in the following equa-
tion:

(13)

In order to realize this receiver, a multiple-input, multiple-
output signal processing structure is needed that can make linear
combinations of the input signals to produce a single output
signal.

Fig. 2 shows a schematic representation of this approach
for four possible states of polarization at the input. For the
case where the transmit polarization aligns with the polar-
ization splitter at the receiver, polarization demultiplexing
appears reasonably conventional with the splitter separating
the two polarizations and a bit-delay interferometer performing
the DQPSK demultiplexing. In Fig. 2(a), the highlighted
waveguides show one of the four data streams’ paths. The
demultiplexed signal comes from a single balanced photodiode
pair, as shown by the arrow. In Fig. 2(b), a 90 rotation occurs
and the same data stream ends up on a different set of photodi-
odes. In Fig. 2(c), the polarization is circularly polarized such
that the signal must be reconstructed from four independent
photodiodes, as shown by the arrows. For a linear polarization
at 45 from the transmit [see Fig. 2(d)], a similar combination
restores the original datastream; only the contribution from the
polarization mixed components needs to change.

The signal processing can be performed in either analog or
digital domain. Moreover, adaptation of the receiver can be
achieved using conventional least mean squares (LMS) adapta-
tion. By employing a signal-processing-based adaptation, rapid
polarization transients can be tracked as optical response time
does not limit tracking capability [13].

A benefit of the LMS adaptation is that crosstalk occurring
between the outputs is always minimized. Variation in the re-
sponse of photodiode pairs will be tracked by the gain cells

(11)

(12)
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Fig. 2. Signal paths required to reconstruct four example states of polarization.

without any intervention. DQPSK has excellent phase noise tol-
erance, such as to cross-phase modulation often present in wave-
length-division multiplexing systems. To first order, sensitivity
to chromatic and polarization dispersion depends on the baud
rate. Chromatic dispersion needs to be compensated within a
window that is similar to other 10 GBaud modulation formats,
such as single-polarization DQPSK. Simulation and experiment
have not shown any particular sensitivity that the tracking intro-
duces to chromatic dispersion tolerance.

III. DQPSK PIC PERFORMANCE

A. Polarization Components

Optical power splitters and combiners, connected in various
ways, are at the heart of this PIC layout. These are typically built
either as directional couplers (DC) [15] or multimode interfer-
ence (MMI) [16] couplers. DC require very good fabrication
control of the width of the gap between the coupler waveguides.
On the other hand, for acceptable performance, MMI couplers
require very good control of the dimensions of the multimode
section. We chose to go with the MMI-based architecture for the
PIC.

Fig. 3 shows the polarization extinction ratio (PER) perfor-
mance of the PBS at the input of the PIC. The PBS is based
on an asymmetric Mach Zehnder interferometer (MZI) struc-
ture [17]. PBS devices based on DC geometries have also been
successfully demonstrated [18].

In the MMI-based PBS structure, the TM mode index is pref-
erentially changed in one of the arms of the MZI. When we in-
duce a -phase change preferentially for the TM polarization,

Fig. 3. Performance of a PBS test structure over wavelength. The PBS FSR of
16 nm is due to the deliberate design of the MZI test structure used to measure
the PER.

we get the response shown in Fig. 3. The PER is measured be-
tween the TM cross and TE cross or between TM bar and TE
bar states. We have better than 20 dB PER.

The wavelength response of the PBS is very flat over a large
wavelength range. The free spectral range (FSR) of 16 nm in
the stand-alone MZI test structure, shown in Fig. 3, is due to
the deliberate design modification that was used to characterize
the PER. In the integrated PBS device, the path lengths of the
MZI arms are matched for performance over a wide wavelength
range.
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Fig. 4. Performance of the polarization rotator with wavelength.

The TE and TM outputs of the PBS have orthogonal electric
field orientations. The rotator is used to convert the TM output
(which is oriented perpendicular to the plane of the substrate) to
the same orientation as the TE output (which is oriented parallel
to the plane of the substrate). Even symmetric optical waveg-
uides have some birefringence in general, i.e., they have dif-
ferent propagation constants for the TE and TM modes. A beat
length refers to the propagation distance in the waveguide over
which a -phase difference accumulates between the TE and
TM modes. Cross-sectional asymmetries or compositional vari-
ations may be used to increase the birefringence in waveguides,
and shorten the beat length.

Polarization rotators are commonly made of asymmetric
waveguides, e.g., waveguides with one sloped sidewall and
one vertical sidewall [19]–[21]. The waveguide design is such
that the eigenmodes of the structure is oriented at an angle of
45 to the TE/TM eigenmodes of the input and output waveg-
uides with vertical sidewalls. After propagating a beat length
inside the rotator, the electric field of the input optical mode
is effectively “rotated” to its orthogonal orientation. A rotator
built from this principle is a periodic structure and has to be
terminated at its beat length. Otherwise, the input optical field
will continue to evolve inside the rotator. Rotators may also be
built out of waveguides with trenches [22], [23] or tight optical
bends [24], [25] to provide the required asymmetry.

We used an asymmetric waveguide design similar to [21] for
the rotator. Fig. 4 shows performance of the polarization rotator.
In the wavelength range shown, the TM/TE conversion is well
over 90%, typically in excess of 20 dB extinction of the un-
wanted polarization. The insertion loss is less than 0.5 dB.

We used an electrical heater tuned MZI design for the VOA
in the TE path. The VOA was used to compensate for the losses
in the TM path, and power balance the two signal paths.

A TE polarizer is a device with high insertion loss for the
TM polarization, and operates with minimal insertion loss for
the TE polarization. The TM polarizer does the opposite. There
is a TM polarizer at the TM output of the PBS just before the
rotator. Although the PBS has a PER in excess of 25 dB, the TM
polarizer further cleans up the signal path by stripping away any
residual TE signal. There is a TE polarizer after the rotator in the
TM path and after the VOA in the TE path. This ensures that any

Fig. 5. TE polarizer performance over wavelength shows a better than 25 dB
extinction ratio.

Fig. 6. TM polarizer performance over wavelength also shows a better than
25 dB extinction ratio.

residual TM signal (capable of causing coherent crosstalk) has
been completely eliminated from the signal paths. Polarizers are
metal clad waveguides that preferentially affect the TE or TM
signal states.

Fig. 5 shows the performance of the TE polarizer and Fig. 6
shows the performance of the TM polarizer as a function of
wavelength. They both have PER in excess of 25 dB over a wide
wavelength range.

B. Wavelength Demultiplexer and Optical Hybrid

Fig. 7 shows the optical spectrum of the AWG used as the
wavelength demultiplexer [26], [27]. The design is similar to
the ones that we have used on our OOK PICs [3]. The AWG
insertion loss is of the order of 2.5 dB and the adjacent channel
crosstalk is better than 25 dB.

Fig. 8 shows the performance of a stand-alone 2 4 optical
hybrid with extinction ratio in excess of 20 dB. The optical hy-
brid, required to create the 90 phase offset between the I and
Q components of the DQPSK signal, may be built from a series
of 2 2 MMIs (as shown as an inset in Fig. 1), a single 2 4
MMI [28], [29] or series of DC [13]. In the 2 4 (or generally a
4 4) MMI the 90 IQ phase offset is the result of the physical
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Fig. 7. 10 Channel, 200 GHz spaced AWG performance.

Fig. 8. Performance of stand-alone optical hybrid test structure.

phase relationships between four outputs of the MMI structure.
In the other two cases, the waveguide layout needs to be strictly
controlled to achieve the required phase offset. In our case, 90
phase offset of the optical hybrid is not actively controlled.

The FSR of the 1-bit delay is designed to match the baud
rate of the DQPSK signal that is 11.4 Gb/s. The AWG channel
spacing is 200 GHz. In the integrated version, multiple 1-bit
delay passbands would fit inside of one AWG passband.

Fig. 9 shows the normalized responsivity of the array of 160
PDs. The responsivity measurement is done using a tunable
laser source (TLS) first aligned to the TE and then to the TM
orientation on PIC. Wavelength sweep of the TLS produces a
series of fringes at the PDs (the composite response is a product
of responses in Figs. 7 and 8). Reported responsivity is the peak
value of the composite response at the PD. The total power vari-
ation across all channels is within 4 dB. This variation has con-
tributions from all the components up to and including the PDs.
The insertion loss performance of the devices is sufficient for
implementation in a long haul network [the overall insertion loss
of the receiver is not an issue in a network using erbium-doped
fiber amplifiers (EDFAs)]. We can use the VOA, in the TE arm
at the input, to achieve power balance between the two input
polarizations. Further, the VOA may be adjusted over the life
of the receiver to compensate for any changes in insertion loss

Fig. 9. Normalized DC responsivity of the 160 PD array (shown as the inset)
across the PIC.

Fig. 10. S21 response of a stand-alone PD compared to one with the optical
hybrid ahead of it. The red curve is the result of the optical hybrid being biased
at a null.

between the TE and TM paths. The PD array is also shown in
the figure.

C. RF Performance

Fig. 10 shows the S21 response (bandwidth) of the PD. The
response of the stand-alone PD (in a separate test cell) drops
only by about 1 dB at 20 GHz. When the response is measured
on the PIC, the result is the characteristic filter response of the
1-bit delay. For this measurement, the 1-bit delay is biased at
the peak of the passband. As also shown in Fig. 10, the filter
response is suppressed at the null bias point. The electrically
measured FSR of the 1-bit delay, 11.4 GHz, is in agreement with
the optical measurement.

The PIC and the electronic processor (ASIC) are integrated
into a ceramic multilayer package. The multilayer design allows
complex internal signal and power routings while maintaining
good RF signal integrity, without the need for separate thin film
circuits and additional interconnects. The package has an elec-
trical interface providing I/O connections for 450 Gb/s
data, power and controls. A lensed fiber couples the input op-
tical signal to the PIC waveguide and a thermoelectric cooler
(TEC) maintains constant device temperature, and the package
is hermetically sealed.
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Fig. 11. Forty 11.4 Gb/s eye diagrams comprising of the I and Q data for both
TE and TM polarizations from a package receiver.

Fig. 11 shows the forty 11.4 Gb/s eye diagrams of the de-
modulated DQPSK signal. The bit error rate performance of all
the channels is well below the FEC-correctable limit. Most of
the channels were error-free for the duration of the test. Thus,
the package is capable of a total data rate of 456 Gb/s. Visu-
ally, some of the eye diagrams may look better than others.
This is mostly due to variations in loss between the individual
paths. The module was tested with the TEC nonoperational, i.e.,
without strict temperature control. This is possible because the
resulting phase variation in the 1-bit delay was automatically
tracked by the electronics.

IV. SUMMARY

We have demonstrated a fully integrated PIC on InP that is
capable of detecting and demodulating ten independent wave-
length channels of PM-DQPSK signal. The polarization and
phase tracking are accomplished using different combinations
of the input signal and its 1-bit delayed version, and an elec-
tronic processor to implement the decoding algorithm. Unlike
previous implementations, we do not need external optics or
LO-based coherent techniques for polarization tracking and
signal demodulation at the receiver.
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