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Abstract—An improved feed-forward carrier phase estimation
scheme with further complexity reduction is presented and nu-
merically verified for quadrature amplitude modulation (QAM)
formats. Based on the blind phase search (BPS) algorithm, a gen-
eral two-stage configuration is first derived by removing several re-
strictions assumed in the prior art. Two guidelines for determining
the design parameters are then proposed to minimize the compu-
tational complexity while mitigating the pattern effect and main-
taining the tolerance to laser linewidth. Taking square 64QAM as
an example, the computational efforts can be reduced by a factor of
4 while keeping the same tolerance to laser linewidth as compared
to a single-stage BPS estimator.

Index Terms—Carrier phase estimation, coherent detection,
feed-forward, optical communications, quadrature amplitude
modulation (QAM).

I. INTRODUCTION

T HE growing bandwidth demand has imposed great chal-
lenges on optical transport networks. Therefore, many ef-

forts have been made on high-capacity and high-speed optical
transmission systems [1]. Among diverse enabling techniques,
the use of quadrature amplitude modulation (QAM) fueled by
coherent detection is an attractive solution [2]–[5]. On one hand,
the use of spectrally-efficient QAM formats allows enhancing
the channel date rate at no cost of increased optoelectronic band-
width. On the other hand, the success of employing advanced
modulation formats relies on the coherent detection since it en-
ables to access to the full information of optical fields, while
resorting to the powerful digital signal processing (DSP) tech-
niques [6], [7].

In contemporary optical coherent systems, the laser phase
noise is commonly compensated for by digital carrier phase es-
timation, which allows the use of free-running local- oscillator
(LO) lasers at the receiver side. In practice, the digital carrier
phase estimation is desired to be implemented in a blind and
feed-forward manner for efficient purpose. Therefore, a number
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of blind feed-forward carrier phase estimation algorithms have
been proposed for quadrature phase-shift keying (QPSK) and
square 16 QAM formats [8]–[12]. However, it is intractable to
extent these algorithms for higher-order QAM formats due to
the stronger susceptibility to laser phase noise and the denser
constellations of such formats.

Recently, T. Pfau et al. introduced the blind-phase-search
(BPS) algorithm (also called the minimum distance method)
that was originally proposed for more general synchronous
communication systems in [13] and [14] to optical coherent
systems [15]. The developed estimator is based on a single-
stage configuration. This single-stage BPS estimator features
good tolerance to laser linewidth, blind feed-forward manner,
and universality to arbitrary QAM formats. Nevertheless, a
practical problem associated with the single-stage configu-
ration is its hardware implementation complexity. Several
two-stage feedforward carrier phase estimation schemes have
been reported to cut down the complexity [16]–[19]. With
these schemes, the computational effort has been reduced
by a factor ranging from 1.5 to 3 depending on the order of
QAM formats. In two of these literatures [16] and [17], the
BPS algorithm is employed in only one of the two stages.
The BPS-based stage serves as a fine carrier phase estimator
in [16], while the BPS-based stage is designed to provide a
coarse estimate of the carrier phase in [17]. In contrast to the
above two works, both stages utilize the BPS algorithm for the
coarse and fine estimations respectively in [18], [19]. Herein,
an estimator using BPS algorithm in both stages is referred to
as a two-stage BPS estimator in this paper. In [18] and [19], the
overall complexity is not significantly reduced since the total
number of test-phase angles was not minimized for a two-stage
configuration. A critical problem hindering the minimization
of test-phase angle number is the pattern effect which has not
been analyzed previously. Furthermore, in [18] and [19], the
restriction of equal summing window length of two stages also
prevents flexible tradeoff between the mitigation of pattern
effect and laser linewidth tolerance.

In this paper, an improved two-stage BPS estimation scheme
is proposed with further complexity reduction. By removing the
restrictions assumed in [18] and [19], the pattern effect is miti-
gated and the total number of test phase angles of the two stages
is minimized while keeping the same tolerance to laser phase
noise as the single-stage BPS estimator described in [15].

The rest of the paper is organized as follows. Section II begins
with a brief review of the conventional BPS algorithm specified
in [15], and then provides an explanation on the pattern effect.
Section III first describes the configuration of a general two-
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stage BPS estimator derived based on [18] and [19], and then
elaborates on the guidelines to minimize the complexity for a
two-stage BPS estimator. In Section IV, simulation results are
presented. Finally, further discussion and conclusion are made
in Sections V and VI.

II. BPS ALGORITHM AND PATTERN EFFECT

A. Conventional BPS Algorithm

Assuming ideal signal detection, clock recovery, equaliza-
tion, and laser frequency offset compensation, the input symbol-
rate sample to a carrier phase estimator in a typical digital
optical coherent receiver can be modeled as

(1)

where denotes the th transmitted symbol drawn from a
QAM constellation; stands for additive complex white
Gaussian noise; and represents the phase noise.

In order to estimate , a distance metric is first
defined as follows [13]–[15]:

(2)

where Decision denotes hard decision in accordance with
the given QAM constellation; represents the test phase in the
range ) due to the rotational symmetry of QAM
constellations; floor denotes flooring function; ceil de-
notes ceiling function; is an integer and denotes the length of
summing window within which the squared Euclidean distances
of the symbols are summed up to smooth the additive noise. It
can be seen from (2) that the observed sample is located
roughly in the center of the summing window depending on the
parity of . With the defined distance metric, the rule of the
BPS algorithm is to find a phase angle having the minimum dis-
tance metric, which can be formulated as

(3)

where denotes the phase estimate for the th symbol,
denotes to find a phase which makes min-

imum, and unwrap stands for the conventional unwrapping
operation to overcome cycle slipping.

In practice, it is impossible to solve the above minimiza-
tion problem over a continuous phase range . It has
been suggested to discretize the test phase into a finite set of
equidistant phase angles given by

(4)

where is the index of these discrete phase angles, and denotes
the total number of these phase angles and defines the test-phase
resolution. It is worthy to note that is directly associated with

Fig. 1. Two typical cases that contribute to the pattern effect.

the entire complexity of the estimator since each phase angle re-
quires one time of distance metric computation which consumes
considerable efforts according to (2). Hence, one effective way
to cut down the ultimate complexity lies in the reduction of the
number of test phase angles (i.e., the number of distance-metric
computations).

B. Pattern Effect

Let us consider (1) and (2). As is known, a symbol
selected from a given QAM constellation may exhibit different
discrete amplitudes and have different count of adjacent points
around it in the constellation. For the symbols with different
amplitudes and different locations in the constellation, even the
same amount of additive complex noise and phase offset

may convert to different magnitude of deviation from
the hard-decided constellation points. Therefore, the distance
metric defined by (2) varies depending on different
symbol sequence pattern in an observed summing window. In
this paper, this phenomenon is referred to as the pattern effect.
Two typical cases that facilitate understanding of the above
statement are illustrated in Fig. 1, where the first quadrant of
a 64QAM constellation is considered. As for the first case, it
can be seen that the same phase offset may lead to different
distances for symbols with different amplitudes. Regarding
the second case, error decision is more likely to occur for the
inner points due to more surrounding points. In this case, the
same amount of additive complex noise may likewise lead to
different distances.

In principle, the summing window should be sufficiently long
so that the impact of the pattern effect is negligible. However, in
an optical coherent receiver, the presence of time-varying phase
noise induced by laser linewidth and fiber nonlinearity prevents
too long summing window for carrier phase estimation. With
a limited , the pattern effect gets more serious in particular
for higher-order QAM formats. In order to illustrate this effect,
simulations were carried out for square 64QAM with no laser
linewidth and a typical signal-to-noise ratio (SNR) per symbol

of 23 dB. Fig. 2(a) plots the average distance metric
as a function of test phase with enough reso-

lution (i.e., ). Besides the black solid line for a large
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Fig. 2. Illustration of the pattern effect: (a) average distance metric as a function
of the test phase and (b) pattern effect results in significant estimation errors for
a limited � .

, there are two examples corresponding to two spe-
cial symbol patterns for a limited . It can be clearly seen
that multiple sharp local minimums appear for these patterns.
Fig. 2(b) shows one example in which the pattern effect results
in significant estimation error. As can be seen from Fig. 2(b), if
the number of test-phase angles is limited (e.g., ), the
estimator may detect a phase angle far from the target. The devi-
ation may exceed one minimum search interval. Therefore, the
pattern effect should be in particular paid attention to.

III. COMPLEXITY-REDUCED TWO-STAGE BPS ESTIMATOR

A. General Two-Stage BPS Configuration

In [18] and [19], the overall complexity is not significantly
reduced since the total number of test-phase angles was not
minimized for a two-stage configuration. In addition, the sum-
ming window length is also restricted to be equal for the two
stages. Here, it is preferable to derive a more general two-stage
BPS estimator by removing the restrictions assumed in [18] and
[19]. The block diagram of a general two-stage BPS estimator
is shown in Fig. 3. It can be seen that the structure of each
stage is similar to the single-stage BPS estimator described in
[15]. denotes the th test phase angle in the th stage for

. represents the number of test phase angles in the
th stage. stands for the computed distance metric

corresponding to phase angle for the th symbol. de-
notes the phase estimate selected from the test phase angles
in the th stage. denotes the summing window length of the
th stage, which was forced to be identical in [18] and [19]. In

the first stage, the test phase angles is directly given by

(5)

The test phase angles of the second stage is computed
based on the coarse phase estimate according to

(6)

It is worthy to note from (6) that the second stage actually
contains test phase angles including the estimated phase
angle of the first stage. However, the most of the opera-
tions for computing the distance metric of has been ac-
complished in the first stage, such as the phase rotation, hard
decision, and squared Euclidean distance calculation. The only
difference is the summing operation over different-length sum-
ming windows, which merely leads to a change of the number
of real adders. Moreover, is preferred to be larger than ,
which will be explained and demonstrated later. In this regard,
there are no additional computational efforts for computing the
distance metric of in the second stage. Therefore, the ef-
fective number of phase angles associated with the complexity
is only for the second stage. With the parameters and ,
the following conclusions can be readily drawn. The test-phase
resolution is defined by the product of and , and the en-
tire complexity of an estimator is determined by the sum of
and .

In the following, vectors and
are used to describe the crucial characteristics of a two-stage
BPS estimator for convenience. Similarly, and denote
the characteristics of a single-stage BPS estimator. In general,

, and can be arbitrary positive integers. However,
several design guidelines exist to choose these parameters
considering the complexity, test-phase resolution, phase noise
tolerance, and pattern effect.

B. Guidelines for Complexity Minimization

Solely considering the computational effort or complexity, a
straightforward guideline is to minimize while keeping

close to , where denotes the minimum acceptable
number of test phase angles for a single-stage BPS estimator
[15]. The condition indicates a similar test-phase
resolution of the two-stage estimator to a single-stage one.
The objective of minimizing means to reduce the total
number of test-phase angles, thereby cutting down the entire
complexity as much as possible.

Taking square 64QAM as an example, the required number of
test phase angles is inferred to be 64 for a single-stage estimator
(i.e., ) [15]. According to Guideline 1, the desired and

are both equal to 8 (i.e., ). Hence, the total number
of test phase angles is only 16 indicating a complexity reduction
by a factor of 4.

In light of Guideline 1, the number of test-phase angles in the
first stage is suggested to be reduced to a small value (e.g., 8 for
64QAM). As explained in Section II.B, the pattern effect may
lead to significant estimation errors in the first stage. Owing to
the pattern effect, it is of high probability to make an inaccurate
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Fig. 3. Block diagram of the derived general two-stage BPS estimator.

coarse estimation in the first stage, which causes a meaningless
fine phase search in the second stage. It is more convenient to
understand this with the assistance of Fig. 2(b). If the number
of test-phase angles are limited in the first stage (e.g., ),
the coarse phase estimate may be far from the actual phase.
In this case, the target minimum will be out of the searching
range of the second stage according to (6). The ultimate estima-
tion accuracy inevitably degrades. In order to mitigate the pat-
tern effect, the key is to increase the summing window length
as much as possible. Fortunately, the minimum phase search
spacing becomes larger as the number of test phase angles de-
creases. Moreover, the minimum phase search spacing of the
first stage is certainly larger than the second stage. Larger search
spacing implies lower resolution and thereby allows for more
significant fluctuations of phase noise in an observed summing
window. Equivalently speaking, if the amount of phase noise is
fixed, a longer summing window is acceptable. In this regard, it
is a feasible way to appropriately extend the summing window
in the first stage for mitigating the pattern effect. It is interesting
that this treatment will not burden the estimator too much in
terms of complexity since it merely requires several additional
real adders regarding the hardware implementation.

Under the precondition of an accurate coarse estimation, the
final tolerance to laser phase noise rests with the second stage.
From an empirical point of view, the optimal summing window
length of the second stage should approximate to that of a single-
stage estimator for the sake of obtaining comparable tolerance
to laser phase noise. This prediction will be verified by the sim-
ulation results in the next section. Therefore, another guideline
for determining is summarized as follows:

Here is the optimal length of summing window for a
single-stage BPS estimator given the same SNR and laser
linewidth. So far, one can realize the significance of removing
the restriction of . This manipulation enables inde-
pendent optimization of and granting a specialized role
to each individual stage. The first stage mitigates the pattern

effect to guarantee a reliable coarse estimation, and then the
second stage tries to maintain the same tolerance to laser phase
noise. If is still restricted to be equal to , the estimator
has to make a tradeoff between relaxing the pattern effect and
preserving the same laser linewidth tolerance. This compro-
mise will lead to some performance degradation. In sum, under
the condition given by Guideline 2, the first guideline can be
implemented with similar laser-linewidth tolerance.

IV. NUMERICAL RESULTS

By numerical simulations taking square 64QAM as example,
this section is dedicated to verification and evaluation of the im-
proved two-stage BPS estimator aided by the proposed guide-
lines. In our simulations, a total of symbols were used to
obtain the bit error ratio (BER) or -factor in dB. Every six bits
were mapped into one symbol. Two of every six bits were as-
signed to perform differential coding for overcoming phase
ambiguity [15]. The input sample sequence to an estimator is
generated according to (1), where the phase noise is modeled as
a Wiener process [15], and the additive complex Gaussian noise
is loaded to determine .

At first, a two-dimensional optimization of the two parame-
ters and was carried out for the derived two-stage BPS
estimator with . The product of and was set to
a typical value of , where denotes the combined
linewidth of the transmitter and receiver lasers [12], and rep-
resents the symbol duration. The contour diagram is shown in
Fig. 4 at dB. In terms of -factor in dB, there is
one maximum located at confirming
in the optimal case. Moreover, it is necessary to emphasize here
that the optimized length of summing window of a single-stage
estimator is roughly 15 as well (i.e., ) for

and dB. The same situations happened
for other values of and . Therefore, it is clear
that the simulation results show excellent agreement with the
prediction behind Guideline 2.

In order to evaluate the joint impact of pattern effect and laser
linewidth in the first stage, the variance of the estimation error
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Fig. 4. Contour diagram for optimization of the parameters � and � .

Fig. 5. Variance of estimation error versus the length of summing window in
the first stage for � � �.

was assessed as a function of the summing window length in the
first stage for (Fig. 5). It can be seen that there is one min-
imum of the estimation error corresponding to an optimal for
each . Although is suggested to be suitably increased
in order to mitigate the pattern effect, the optimal value of is
still upper-bounded due to the laser linewidth. Hence, this min-
imum is the outcome after compromising the pattern effect and
laser phase noise. It can also be observed that the optimal
decreases with the increase of . Assuming takes the
optimal value and dB, the -factor as a function
of was calculated for the proposed two-stage BPS estimator
with at different (Fig. 6). Figs. 5 and 6 show
good agreement in terms of the optimal . This indicates that
the coarse estimation accuracy in the first stage principally in-
fluences the ultimate phase estimation accuracy and the BER.

Then, the -factor was investigated as a function of ,
assuming that takes the optimal value in each case and

dB. Fig. 7 shows the results for the proposed
two-stage BPS estimator with at different .
The -factor as a function of for a single-stage BPS esti-
mator with are also plotted using the blue curves for
comparison. The optimized two-stage estimator shows an iden-
tical performance to a single-stage one. It means that the impact

Fig. 6. �-factor versus � for the proposed two-stage BPS estimator.

Fig. 7. �-factor versus � for the proposed two-stage BPS estimator and
�-factor versus � for the single-stage BPS estimator in [15].

Fig. 8. �-factor versus � �� for different estimators.

of the pattern effect has been mitigated to a negligible level,
and meanwhile the estimation accuracy is maintained. Another
important observation is that the optimal is approximately
equal to the optimal for each , which further verifies
the prediction behind Guideline 2.

Fig. 8 compares the simulated -factor as a function of
at for three estimators: the

proposed two-stage estimator with , a two-stage esti-
mator with the same but with the restriction of equal summing
window length (i.e., ), and the single stage estimator
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Fig. 9. Laser phase noise tolerance for different estimators.

with . In each case, the summing window length is
optimized. The optimal summing window lengths are listed
in the inset table. It can be seen that the proposed two-stage
estimator with independently-optimized and exhibits
almost the same performance as the single-stage estimator.
In contrast, with the restriction of , the two-stage
estimator suffers from roughly 0.4-dB sensitivity penalty at

or equivalent dB.
Fig. 9 shows the tolerance to laser phase noise at

dB for these three estimators. In each case, the
summing length window is optimized. The optimal summing
window lengths are listed in the inset table.If the restriction
of is reserved, the two-stage estimator is subject
to a larger Q-penalty. In contrast, the proposed two-stage
estimator with independently- optimized and possesses
comparable laser phase noise tolerance to the single-stage one.

V. FURTHER DISCUSSION

Although only the results of 64QAM are presented in this
paper, other QAM formats with levels up to 128 were also
investigated with similar results obtained. The proposed guide-
lines function well. However, if the QAM level further increases
to 256 or even higher, some degree of performance degradation
would occur in the presence of large laser linewidth due to the
short summing window and significant resultant pattern effect
in the first stage. In these cases, the complexity is minimized
at a cost of performance, which is not advisable. Therefore, the
performance is required to be taken into account in the mini-
mization of for QAM formats with 256-level and higher.
Fortunately, Guideline 1 offers the possibility to elaborately
change the sum of and around its minimum point, since
the product of and is only forced to be close to the value
of , rather than equal to . For example, for 256 QAM.
Several combinations can be obtained around the minimum
point of , such as .
As explained earlier, the pattern effect is mainly dependent
on the value of , and the pattern effect attenuates with the
increase of . Hence, an estimator with is a good
choice in terms of performance despite of the aggravated hard-
ware burden induced by one additional test-phase angle. In this
case, the computational complexity is not globally minimal but
the performance holds.

The last issue is about the stage number. Inspired by the de-
rived two-stage configuration and proposed guidelines, one can
indeed extend an estimator to have more stages. For example, a
three-stage estimator is expected to have demon-
strating a potential complexity reduction for 64QAM.
However, in this case, the pattern effect is so severe that an
extremely long summing window is commonly required in the
first stage especially for higher-order formats. This will increase
the computational efforts and be prohibitive in the presence of
large laser phase noise and strong fiber nonlinearity. In practice,
a two-stage configuration seems to be the best option in terms
of complexity and performance.

VI. CONCLUSION

Based on the BPS algorithm, a general two-stage feed- for-
ward carrier phase estimator has been derived by removing sev-
eral restrictions assumed in the prior art. The derived two-stage
estimator possesses several degrees of freedom to independently
determine its crucial parameters, such as the summing window
length and test-phase angle number in each individual stage.
Under the framework of the generalized two-stage estimator,
two major guidelines are presented to minimize the computa-
tional complexity while avoiding significant pattern effect and
maintaining the tolerance to laser linewidth. As compared to the
conventional single-stage BPS estimator demonstrated in [15],
the derived two-stage estimator adhering to the proposed guide-
lines is capable of achieving 4 reduction of computational
complexity for the representative square 64QAM format.
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